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Storage-ring FEL amplifiers and electron beam longitudinal mode-damping times

G. Dattoli, L. Mezi, P. L. Ottaviani,* A. Renieri, and M. Vaccari*
ENEA, Dipartimento Innovazione, Divisione Fisica Applicata, Centro Ricerche Frascati, C.P. 65, 00044 Frascati, Rome, Ital

~Received 5 September 1997!

We exploit the Fokker-Planck equation to investigate the longitudinal phase-space dynamics of a FEL
amplifier operating with a storage ring. We study both standard and optical-klystron configurations and prove
that in both cases the damping times of the electron longitudinal modes are modified by the system operating
conditions. In particular, they decrease with increasing laser power when the input laser is tuned at the resonant
frequency.@S1063-651X~98!00306-7#

PACS number~s!: 41.60.Cr
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I. INTRODUCTION

Different models have been developed to analyze the e
lution of the storage-ring~SR! free-electron laser~FEL! dy-
namics@1#. Among these, a fairly efficient tool is provide
by the Fokker-Planck equation~FPE! @2#, which has recently
been employed to study the dynamical behavior of
electron-beam longitudinal distribution for a SR FEL amp
fier @3#. This preliminary investigation has provided an ind
cation that the damping times of the longitudinal modes
pend on the system parameters. They have been shown
a function of the laser intensity and of the detuning para
eter. In this paper we analyze this problem more deeply
show that the damping times of higher-order longitudin
modes is significantly reduced for SR FEL amplifiers op
ating in either the undulator or optical-klystron~OK! con-
figuration.

The increase of the damping times ensures a more
cient ‘‘cooling’’ mechanism and therefore this result appe
particularly interesting since, as it will be discussed in t
following, it seems to confirm the general tendency, s
gested by experimental and numerical studies, that the o
of the FEL interaction acts as a feedback stabilizing mec
nism for some kinds of longitudinal instabilities.

The plan of the paper is the following. In Sec. II we stu
the FPE governing the evolution of the longitudinal pha
space dynamics of a SR electron beam undergoing a
amplification in the undulator configuration. We perform
mode expansion based on Hermite functions and prove
numerical analysis, that the mode damping times are se
tive to the various parameters of the system. In Sec. III
address the same problem for the OK configuration and s
that in this case too the mode damping times are affecte
the main parameter of the system. Section IV is devoted
concluding remarks. We comment on the link between
present results and other observations related to the in
tion caused by the FEL interaction of microwave instabil
and potential well distortion effects. Appendixes A and B a
devoted to the details of the calculations.

*Present address: ENEA, Dipartimento Innovazione, Cen
Ricerche Bologna, Bologna, Italy.
571063-651X/98/57~6!/7153~9!/$15.00
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II. SR FEL AMPLIFIERS AND LONGITUDINAL MODE
DYNAMICS

The evolution of the longitudinal distributionf (z,«,t) of
an electron beam circulating in a SR and undergoing a F
interaction can be described by the FPE
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where« is the relative energy,vs the synchrotron frequency
ac the momentum compaction,T the machine revolution
period, andD the radiation noise diffusion coefficient. Equa
tion ~2.1! reduces to the usual FPE of the SR synchrot
motion when the laser is off (^d«2&50). In this last case, the
stationary solution (] f /]t50) is provided by

f 0~z,«!5
1

2pszs«
expF2

1

2 S z2

sz
2 1

«2

s«
2D G , ~2.2!

where

s«5ADts

2
, sz5

cac

vs
s« . ~2.3!

By rescaling the variable according to the prescription

u5vst,

v̄s5vsts ,

x5
z

sz
,

~2.4a!

y5
«

s«

and by recalling that

^d«2&5AFsin~n/2!

n/2 G2

, n52pN
v02v

v0
, ~2.4b!

we can recast Eq.~2.1! in the form
o
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where m«54Ns« is the energy-spread inhomogeneo
broadening parameter,y0 is linked to the detuning as dis
cussed below, and

W5
1

m«
2

I

I s

ts

T
, ~2.5b!

with I being the laser power density andI s the FEL power
saturation density. Equation~2.5! can be conveniently ex
panded in terms of harmonic-oscillator functions~see Ap-
pendix A!

g~x,y,u!5
1

2p (
r ,m50

`

hr 1m,m~u!Her~x!Hem~y!

3expS 2
x21y2

2 D ~2.6!

to get ~see also Ref.@3#!

d
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where

Gm
r ~m« ,y0!5

1

~m21!!

1

A2p

3E
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1`S sin cF p

2
~y1y0!m«G D 2

3expS 2
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2 DHer 11~y!Hem21~y!dy.

~2.8!

It is evident that when the FEL is switched off (W50),
coupling occurs only between modes having the same in
n, which specifies the order of the mode~n51 dipole, n
52 quadrupole,n53 sextupole, etc.!. The evolution of the
mode can be easily obtained and is characterized by the
genvalues

ln,s
6 52

n

v̄s
6 isA12

1

v̄s
2, s!m,

~2.9!

s50,2,. . .,n ~even!, s51,3,. . .,n ~odd!
ex

ei-

~see Appendix A for further comments!. It is also evident
that the longitudinal mode evolution is characterized by
damping timets /n and by an oscillatory frequency. Whe
WÞ0 the problem is no longer amenable for an analyti
treatment, modes are coupled, and the damping times
come functions of the characteristic quantities of the syst
such as, the detuning, the laser intensity, and the inhomo
neous broadening parameter.

Before proceeding further we must stress that the varia
y is linked to the FEL detuning parameter by

y5
n

pm«
,

~2.10!

n52pN
v02v

v0
,

where v0 is the resonant frequency. SinceW is inversely
proportional to m« , we introduce for later convenience
namely, to study separately the effect of the energy spr
and of the input laser power density, the quantity

W5W0Fm«
0

m«
G2

, ~2.11!

wherem«
0 is the inhomogeneous broadening parameter a

ciated with a reference energy spread andW0 is the dimen-
sionless input laser power density normalized tom«

0.
The kernel of the problem is contained in the convoluti

integral ~2.8!, which fixes the size of the matrices to be i
volved in the calculation~see Appendix B!. The problem is
slightly simplified however, by the fact that odd-odd an
even-even mode couplings only are allowed aty050. The
range of values we have considered has allowed us to res
the size of the matrices to 24324 for the even modes~up to
n58! and to 20320 for the odd modes~up to n57!. In the
more general casey0Þ0 even and odd modes are mixed a
we have considered 44344 matrices.

In this way we have obtained reliable eigenvalues forn
51,3,5 andn52,4,6. The results of the numerical analys
are shown in Figs. 1–3, which have been divided into t
groups of odd (n51,3) and even (n52,4) eigenvalues. We
have displayed the dependence vsW0 in Figs. 1~a! and 1~b!,
vs n0 in Figs. 2~a! and 2~b!, and vsm« in Figs. 3~a! and 3~b!.
The eigenvalues are labeled as indicated in Table I.

In Figs. 1~a! and 1~b! we have reported the real part of th
eigenvalues vsW0 . It is evident that the deviation from th

TABLE I. Even and odd eigenvalues and relevant notationsN
is the number of eigenvalues,NR the number of real eigenvalues
NL the number of couples of complex conjugate eigenvalues,l the
real eigenvalue, and Rel the real part of the complex conjugat
eigenvalue.

n N NR NL l Rel

1 2 0 1 0 a
2 3 1 1 a b
3 4 0 2 0 ~b,d!

4 5 1 2 c (d,e)
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natural damping is maximum forn0>0 and for larger values
of W0 . The effect becomes less significant with increas
n0 and for n0.2.5 there is the opposite tendency, name
the eigenvalues decrease~in modulus! and thus the damping
times tend to increase. Figures 2~a! and 2~b! describe the
behavior of Reln vs m« for fixed W0 . In this case one can
see that the effect of damping time reduction is counterac
by larger values of the natural energy spread. This result
be discussed in Sec. IV. Figures 3~a! and 3~b! provide the

FIG. 1. ~a! Real part of the odd eigenvalues vsW0 , for v̄s54
differentn0 values,m«(0)50.1, andm«50.2 ~undulator configura-
tion!. ~b! Same as~a! but for the even eigenvalues.
g
,

d
ill

behavior of the real part of the eigenvalues as a function
the detuning parametern0 ~n0 is the value of the detuning
corresponding toy0! for different W0 values. @To give an
idea of the number involved in, we note thatW051 corre-
sponds to a laser input power density of about 104 W/cm2 for
N550, k53, lu59 cm, g>103, ts5331023 ms, T
5300 ns, ands'«(0);1024. They confirm, from a differ-
ent perspective, the results of Fig. 1.

FIG. 2. ~a! Real part of the odd eigenvalues vsn0 for different
W0 values, with the same parameters as in Fig. 1.~b! Same as~a!,
but for the even eigenvalues.
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III. STORAGE-RING FEL AMPLIFIERS
WITH AN OK CONFIGURATION

The longitudinal dynamics of a SR FEL amplifier, ope
ating with an OK configuration, is governed by the sam
FPE given in Eqs.~2.1! and ~2.7!; the only variations are
contained in the functionsGm

r , which should take into ac
count the role of the dispersive section and of the conseq
optimization to enhance the gain@4#. In particular we get

FIG. 3. ~a! Real part of the odd eigenvalues vsm« for different
W0 values,n0>0, v̄s54, andm«

050.1. ~b! Same as~a!, but for the
even eigenvalues.
e

nt

Gm
r ~k,y0!5

1

2~m21!!

1

A2p
E

2`

1`

dy e2y2/2

3Her 11~y!Hem21~y!cosFp2 k~y1y0!G ,
~3.1a!

where

k5m«
OKA11W, m«

OK58~N1Nd!s« , ~3.1b!

andNd is the number of equivalent periods of the dispers
section. The device is composed of two undulators w
identical number of periods (N) and lengthNlu , separated
by a dispersive section of lengthNdlu .

In Fig. 4 we have reported the real part of the eigenval
vs W0 for different n0 . For smalln0 values, there is a clea
indication that the damping times decrease with increas
W0 . For larger detunings (n0>2.2) there is the opposite
tendency and the damping times increase. Figure 5 fur
confirms the results of Eq.~4! and it is evident that Reln is
above the natural threshold (RelnuW0505n/ts) for n0>2.2.

IV. CONCLUDING REMARKS

The results described in the previous sections are in fa
good agreement with previous experimental and theoret
works. It has indeed been observed@5# that the onset of the
laser is, in many cases, characterized by a partial suppres
of the higher-order longitudinal modes. More recent nume
cal investigations@6# have shown that longitudinal instabili
ties, like the anomalous bunch lengthening, may be s
pressed by the FEL interaction itself. These facts and w
has been discussed in the previous sections can be tr
back to a common framework. The FEL interaction induc
an additional energy spread, which increases with increa
laser intensity. The onset of and the support to the high
order modes becomes significantly reduced. This effec
more pronounced around smalln0 values where the induce
energy spread is larger. This explains the behavior of Fig
and 2, which show that the suppression effect of the high
order modes is less efficient with an increasing detuning
rameter. The same holds for Fig. 2; in fact, for equivale
values ofn0 andW0 , the induced energy spread is reduc
by increasing values of the inhomogeneous broadening
rameterm« .

We must underline that the results of this paper hold
the natural energy spread only. The results of Fig. 3 can
be extended to the case of an energy spread different f
the natural one. We must also underline the peculiar na
of the induced energy spread that is energy dependent
stress that forn0.2.5, i.e., when the slope of the FEL ga
curve becomes negative, the damping times increase.
results of Figs. 4 and 5 relevant to the klystron configurat
confirm the above-given interpretation. We note in fact th
the cooling effect is larger when the induced energy sprea
larger ~i.e., for smallern0 and largerW0!.

We may therefore conclude that various indications
converging and seem to confirm that the FEL interacti
with the consequent induction of an energy-dependent
ergy spread, creates new conditions, which favor the low
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order longitudinal modes and provide a suppression me
nism for the longitudinal instabilities.

We must stress, however, that the present treatmen
limited to the one-dimensional case. Three-dimensional c
tributions may modify some aspects of the interaction
tween electrons and laser light@7,8# and therefore they
should be carefully considered within the present contex

As a final remark we underline that our treatment h
been limited to the amplifier case, while the experimen
results we have referred to are relevant to the oscillator c

FIG. 4. ~a! Real part of the odd eigenvalues vsW0 for different
n0 values,v̄s54, andm̃«

OK50.5 ~OK configuration!. ~b! Same as
~a!, but for the even eigenvalues.
a-

is
n-
-

s
l

n-

figuration. A more appropriate analysis would require t
self-consistent treatment of the evolution of the electr
beam and optical field. A simple analysis based on a heu
tic one-dimensional oscillator model has provided a prelim
nary confirmation of the results of this paper.
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APPENDIX A

To deal with equations of the type~2.7! it is convenient to
introduce a column vectorhI that is specified by an indexi
[(n,m) with 0<n<nmax, 0<m<n, so that

hi85(
j

Ai , jhj1gi , j [~s,r !, ~A1!
y-
d
where

Ai , j5~m11!d~s,r !,~n,m11!2~n2m11!d~s,r !,~n,m21!

2
2m

v̄s
d~s,r !,~n,m!1

2W

v̄s
Gr

md~s,r !,~n2m1r ,r ! , ~A2!

whered denotes the Kronecker delta function andgI is col-
umn vector that is nonzero forn even. In particular we have
for y050 ~with n51,3 andh85Âh!
Â51
0 1 0 0 0 0

21 2
2

vI s
~12WG1

1! 0 0 0
2W

v̄s
G1

3

0 0 0 1 0 0

0 0 23 2
2

v̄s
~12WG1

1! 2 0

2
W

v̄s
G2

0 0 0 22 2
4

v̄s
S 12

W

2
G2

2D 3

0
2W

v̄s
G3

1 0 0 21 2
6

v̄s
S 12

W

3
G3

3D
2 ~A3a!

and ~with n52,4 andhI 85ÂhI 1gI !

Â5

¨

0 1 0 0 0 0 0 0

22 2
2

v̄s
~12WG1

1! 2 0 0 0
2W

v̄s
G1

3 0

0 21 2
4

v̄s
S 12

W

2
G2

2D 0 0 0 0
2W

v̄s
G2

4

0 0 0 0 1 0 0 0

0 0 0 24 2
2

v̄s
~12WG1

1! 2 0 0

2W

v̄s
G2

0 0 0 0 23 2
4

v̄s
S 12

W

2
G2

2D 3 0

0
2W

v̄s
G3

1 0 0 0 22 2
6

v̄s
S 12

W

3
G3

3D 4

0 0
2W

v̄s
G4

2 0 0 0 21 2
8

v̄s
S 12

W

4
G4

4D

©

,

gI 51
0
0

2WG2
0

v̄s

0
0
0
0

2WG4
0

v̄s

2 .

~A3b!
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APPENDIX B

The integrals appearing in Eqs.~2.8! and ~3.1a! involve
products of Gaussian functions and Hermite polynomia
They can be expressed in analytical forms, which are
ported here for the sake of completeness and to provide
ther insight into the structure of the problem. We underl
that the previous analysis is entirely numerical and the
sults of this appendix have been used as benchmarks.

We consider therefore the integral

I m,n~k,a!5E
2`

1`

cos~ky!e2y2/aHen~y!Hen~y!dy,

~B1!

where

Hem~x!5m! (
r 50

@m/2#
~21!rxm22r

2r r ! ~m22r !!
. ~B2!

The integral~B1! can be cast in the form

I m,n~k,a!5Apae2ak2/4 ReFHm,n
~2! S ik

a

2
,

a

4
2

1

2
,ik

a

2
,

a

4

2
1

2
,

a

2 D G ~B3!

if m andn have the same parity; otherwise it vanishes id
tically. Hm,n

(2) are two index Hermite polynomials specified
@8#

Hm,n
~2! ~x,z,y,w,k!5 (

q50

min~m,n!

~21!qq!kqS m
q D

3S n
qDHm2q~x,z!Hn2q~y,w!, ~B4!

whereHm(x,y) are Kampe´–de Feriet polynomials specifie
by @8#

Hm~x,y!5m! (
r 50

@n/2#
yrxm22r

r ! ~m22r !!
. ~B5!

By using the identity

ReFHm,n
~2! S ik

a

2
,

a

4
2

1

2
,ik

a

2
,

a

4
2

1

2
,2

a

2 D G
5~21!~m1n!/2 (

r 50

min~m,n!

~21!r r ! S m
r D S n

r D
3Hm1n22r S a

k

2
,

1

2
2

a

4 D , ~B6!

we obtain the result
.
-
r-

e
-

-

I m,n~0,a!5Apa~21!~m1n!/2 (
r 50

min~m,n!

~21!r r ! S m
r D

3S n
r D ~m1n22r !!

Fm1n

2
2r G ! S 1

2
2

a

4 D ~m1n!/22r

,

~B7!

which can be exploited to get an analytical expression
Gm

r .
By noting indeed that the approximation

S sin x/2

x/2 D 2

>expS 2
x2

11D ~B8!

holds ~see Fig. 6! by keepingy050, and by defining

a~m«!5F ~m«p!2

11
1

1

2G21

, ~B9!

we end up with

Gm
n ~m«,0!>

Aa~m«!

~m21!!

~21!~m1h!/2

&
(
r 50

min~m21,n11!

~21!r r !

3S m21
r D S n11

r D ~m1n22r !!

Fm1n

2
2r G !

3F1

2
2

1

4
a~m«!G ~m1n!/22r

. ~B10!

An idea of the validity of the approximation~A10! is offered
by Fig. 7.

TheGm
n relevant to the OK configuration can be evaluat

without any approximation. We note indeed that by sett
a52 in Eq. ~A3! we find

FIG. 6. Comparison between@sin c(n/2)#2 ~continuous line! and
the approximant Gaussian exp(2n2/11).
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I m,n~k, 1
2 !5A2p~21!~m1n!/2 Re@Hm,n~ ik !#expS 2

k2

2 D ,

~B11a!

where

Hm,n~x!5m!n! (
q50

min~m,n!

q! S m
q D S n

qD xm1n22q,

~B11b!

FIG. 7. ~a! G3
7(m« ,y0) (m«51) vs exact integration~dotted

line! and approximate integration~continuous line!. ~b! G3
1(0,m«)

vs m« exact integration~continuous line! and approximate integra
tion ~dotted line!.
-

.,
thus finally getting

Gm
n ~k,y0!5

1

2~m21!!
Re@Hm21,n11~ ik !eiky0#expS 2

k2

2 D .

~B12!

The behavior ofGm
n (k,y0) for different k and y0 values is

shown in Fig. 8.

FIG. 8. Gm
r (k,y0) vs k for different values ofy0.
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